久久伊人导航,国内精品久久久久久久久久清纯,欧美日韩不卡在线,国产精品免费av片在线观看,精品一区二区三区国产,国产精品9999,午夜一级片,99riav精品免费视频观看

    航空航天學院關于普林斯頓大學Lee Chung- Yi教授學術報告的通知

    發布日期:2010-12-01來源:航空航天學院作者:系統管理員訪問量:12459

    時間:2010年12月3號下午15:00pm—17:00pm
    地點:浙江大學玉泉校區教十二118室
    題目:Theory of Vibrations of Plates:Its Evolution and Applications to Piezoelectric Crystals and Ceramics
    報告人:Professor Emeritus of Civil and Environmental Engineering
    主持人:陳偉球教授 
     
     
    Theory of Vibrations of Plates: Its Evolution and Applications to
    Piezoelectric Crystals and Ceramics
     
    P. C. Y. Lee (Lee Chung- Yi)
    Professor Emeritus of Civil and Environmental Engineering
    Princeton University
    Princeton, NJ 08540
     
     
      In 1809, the French Academy invited Chladni to give a demonstration of his experiments on nodal lines and frequencies of various modes of thin, vibrating plates. It was said that the emperor Napolean attended the meeting, was very impressed, and suggested the Academy to establish an extraordinary prize for the “ problem of deriving a mathematical theory of plate vibration and of comparing theoretical results with those obtained experimentally ”(1). Sophie Germain entered the competition and won the prize in 1816. Thus, the classical equation of flexural vibrations of elastic plates or the Germain- Lagrange plate equation (1811-1816) was born (2). The application of the theory was limited to waves which are long as compared to the thickness of the plate and to frequencies of low-order modes. These limitations are similar to those for the classical equation of flexural vibrations of beams or the Bernoulli-Euler beam equation (1725-1736).
    In the case of beam theory, it was Timoshenko (1921) who made significant advancement by including transverse shear deformation and introducing a shear correction factor in his derivation. His equation gives satisfactory results for short waves and high modes and since is called the Timoshenko beam equation (3). Analogous to Timoshenko’s 1-D theory of beams, many 2-D equations were obtained by including shear deformation and correction factor (4,5).
      In 1951, Mindlin deduced a 2-D theory of flexural motions of isotropic elastic plates from the 3-D equations of elasticity (6). It was shown that with a correction factor the predicted dispersion curves of straight-crested waves agree closely with those from the 3-D theory. These equations and the subsequent ones for crystal plates (1951) and piezoelectric plates (1952) have since become well known worldwide in applied mechanics, structures, frequency control, and ultrasonics, and are generally referred to as the Mindlin (first-order) plate equations (7,8).
      By expanding displacement in a series of trigonometrical functions, which are the simple thickness modes of an infinite plate and by following a general method of deduction of Mindlin (9), 2-D equations were obtained by Lee and Nikodem for isotropic plates in 1972 (10), for anisotropic plates in 1974 (11), and by Lee, Syngellakis, and Hou for piezoelectric plates in1987 (12). Computed dispersion curves agree closely with the exact ones and attain the exact cut-off frequencies for each successive high-order approximation, except for the lowest frequency branch of flexural mode which is not as accurate as that obtained from Mindlin’s equations.
      By adding to the afore mentioned series a term linear in the thickness coordinate to accommodate the in-plane displacements induced by the gradients of deflection in low-frequency flexural motions or static bending, a system of 2-D equations of flexural vibrations are obtained for isotropic, elastic plates (13). Although the form of coupled equations of thickness shear and flexural motions is different from that of Mindlin’s first –order equations (9), the single governing equation in plate deflection is shown to be identical to the corresponding one by Mindlin (6), and the dispersion relations from both systems are shown to be identical. Hence the present system of equations has been shown analytically to be equivalent to the Mindlin first- order equations without introducing any correction factors.
      The same method of displacement expansion has been applied to piezoelectric crystals and ceramics and for higher- order approximations (14-16).
     
     
    References
    1. S. Timoshenko, History of Strength of Materials, McGraw-Hill , New York , 1953, p.119.
    2. S. Germain, “Recherches sur la theorie des surfaces elastiques,” Courcier, Paris, 1821.
    3. S. Timoshenko, D Young, and W Weaver, Jr., Vibration  Problems in Engineering, John Wiley & Sons, New York , 1974, p. 432.
    4. Ya. S. Uflyand, “The propagation of waves in transverse vibrations of bars and plates,” Akad. Nauk SSSR, Prikl. Mat. Meh., vol. 12, 1948, pp.287-300.
    5. E. Reissner, “The effect of transverse shear deformation on the bending of elastic plates,” J. Appl. Mech., vol. 67, 1945, p. A-69.
    6. R.D. Mindlin,” Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates,” J. Appl. Mech., vol. 18, 1951, pp. 31-38.
    7. R.D. Mindlin, “Thickness shear and flexural vibrations of crystal plates,” J. Appl. Phys., vol. 22, 1951, pp. 316-323.
    8. R.D. Mindlin, “Forced thickness shear and flexural vibrations of piezoelectric crystal plates,” J. Appl. Phys., vol. 23, 1952, pp. 83-88.
    9. R.D. Mindlin, “An introduction to the mathematical theory of vibrations of elastic plates, ” U.S. Army Signal Corps Engineering Laboratories, Fort Monmouth , NJ , 1955. The same monograph is available in book form, ed. by J. Yang, World Scientific, New Jersey , 2006.
    10. P.C.Y. Lee and Z. Nikodem, “An approximate theory for high-frequency vibrations of elastic plates, Int. J. Solids Structures, vol. 8, 1972, pp581-612.
    11. Z. Nikodem and P.C.Y. Lee, “Approximate theory of vibrations of crystal plates at high frequencies,” Int. J. Solids Structures, vol. 10, 1974, pp. 177-196.
    12. P.C.Y. Lee, S. Syngellakis , and J.P. Hou, “A two-dimensional theory for vibrations of piezoelectric crystal plates with or without electrodes,” J. Appl. Phys., vol. 61, no.4, 1987, pp 1249-1262.
    13. P.C.Y. Lee, “An accurate two-dimensional theory of vibrations of isotropic, elastic plates,” Proc. 2006 IEEE International Frequency Control Symposium. Also accepted in 2010 for publication in Acta Mechanica Solida Sinica.
    14. P.C.Y. Lee, J.D. Yu, and W.S. Lin,” A two-dimensional theory for vibations of piezoelectric crystal plates with electrodes faces,” J. Appl Phys., vol. 83, no. 3 1998, pp1213-1223.
    15. R. Huang, P.C.Y. Lee, W.S. Lin, and J.-D. Yu, “Extensional, thickness-stretch and symmetric thickness-shear vibrations of piezoceramic diskes, “IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 49, no. 11, 2002, pp. 1507-1515.
    16. P.C.Y. Lee, N.P. Edwards, W.S. Lin, and S. Syngellakis, “Second-order theories for extensional vibrations of piezoelectric crystal plates and strips,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 49, no. 11, 2002, pp. 1497-1506.
     

     

    關閉
    主站蜘蛛池模板: 国产精品天堂| 国产精品一区不卡| 国产在线不卡一| 日韩精品久久一区二区| 狠狠躁日日躁狂躁夜夜躁| 精品久久久影院| 久久二区视频| 97人人模人人爽人人喊38tv| 欧美黄色一二三区| 久久99久久99精品蜜柚传媒| 国产高清无套内谢免费| 国产精品禁18久久久久久| 国产亚洲精品久久久久久网站| 鲁丝一区二区三区免费| 麻豆精品一区二区三区在线观看| 欧美黄色片一区二区| 国产专区一区二区| 日韩精品午夜视频| 亚洲免费永久精品国产| 日本道欧美一区二区aaaa| 一区二区久久久久| 满春阁精品av在线导航 | xxxxhd欧美| 精品欧美一区二区在线观看| 日本一区中文字幕| 一区二区在线不卡| 精品一区二区三区影院| 福利片91| 99国产精品久久久久老师| 欧美日韩偷拍一区| 91久久免费| 国产欧美一区二区三区四区| 91超碰caoporm国产香蕉| 狠狠躁夜夜躁| 精品国产区| 欧美三级午夜理伦三级中视频| 国产伦精品一区二区三区免费迷| 国产一区日韩一区| 精品国产一区二区三区四区vr| 亚洲精品乱码久久久久久高潮| 狠狠色噜噜狼狼狼色综合久| 日韩午夜三级| 国产1区在线观看| 一级午夜电影| 欧美二区在线视频| 亚洲国产精品入口| 国产91免费在线| 欧美日韩一卡二卡| 午夜看大片| 国产日韩一区二区在线| 99久久免费精品国产男女性高好 | 精品国产乱码久久久久久虫虫 | 黄色av中文字幕| 国产精品人人爽人人做av片 | 99爱精品在线| 亚洲欧美制服丝腿| 欧美三级午夜理伦三级中视频| 国产视频精品久久| 欧美视屏一区二区| 99久久精品一区二区| 午夜三级电影院| 免费在线观看国产精品| 激情久久综合网| 99国产精品一区二区| 激情久久一区二区| 国产88在线观看入口| xxxx国产一二三区xxxx| 欧美日韩九区| 日本一区二区三区电影免费观看| 精品国产一区二区三区高潮视| 麻豆天堂网| 欧美日韩国产一二三| 色妞妞www精品视频| 艳妇荡乳欲伦2| 日本午夜精品一区二区三区| 99久久精品免费看国产交换| 欧洲在线一区| 国产视频一区二区三区四区| 99精品国产免费久久| 国产区精品| 久久久精品观看| 在线播放国产一区| 午夜毛片在线看| 国产美女三级无套内谢| 精品国产乱码久久久久久久久 | 国产69精品久久久久999小说| 99精品国产99久久久久久97| 欧美大成色www永久网站婷| 狠狠躁日日躁狂躁夜夜躁av| 亚洲精品乱码久久久久久麻豆不卡| 亚洲乱子伦| 亚洲乱强伦| 在线精品国产一区二区三区| 国产精品亚洲а∨天堂123bt| 国产视频一区二区视频| 狠狠色依依成人婷婷九月| 免费欧美一级视频| 国产videosfree性另类| 99精品欧美一区二区| 午夜av资源| 亚洲欧美日韩视频一区| 国产乱对白刺激视频在线观看| 亚洲午夜国产一区99re久久| 91午夜在线观看| 国产午夜精品一区二区三区在线观看| 国产精品久久久久久久久久不蜜臀| 久久久人成影片免费观看| 国产精品白浆一区二区| 日韩一区免费| 91精品视频一区二区| 久久久综合亚洲91久久98| 日韩一区免费| 日韩av中文字幕在线免费观看| 91精品视频一区二区| 国产专区一区二区| 91久久国产视频| 色妞www精品视频| 国产精品免费不卡| 久久精品欧美一区二区| 日韩国产精品一区二区 | 欧美激情午夜| 午夜黄色网址| 狠狠色噜噜狠狠狠狠69| 在线国产一区二区三区| 91视频国产九色| 91精品第一页| 中文字幕av一区二区三区四区| 中文字幕精品一区二区三区在线| 欧美精品国产一区| 伊人精品一区二区三区| 国产69精品久久99的直播节目| 亚洲一区2区三区| 年轻bbwwbbww高潮| 一区二区免费在线观看| 国产午夜一区二区三区| 国产偷国产偷亚洲清高| 香蕉av一区| 日本三级香港三级| 日韩中文字幕一区二区在线视频| 国产免费一区二区三区四区五区| 久久久久久久久亚洲精品| 午夜av网址| 野花社区不卡一卡二| 国产69精品久久99不卡免费版| 视频一区二区三区欧美| 日本一二三区视频在线| 国产99小视频| 国产中文字幕91| 欧美久久精品一级c片| 亚洲精品无吗| 国产目拍亚洲精品区一区| 88888888国产一区二区| 国产精品入口麻豆九色| 免费看片一区二区三区| 亚洲乱码av一区二区三区中文在线:| 日韩国产欧美中文字幕| 91精品福利在线| 日本久久丰满的少妇三区| 99国产精品| 国产一卡二卡在线播放| 国产精品国产三级国产播12软件| 日韩欧美多p乱免费视频| 91人人爽人人爽人人精88v| 国产欧美日韩在线观看| 狠狠色噜噜狼狼狼色综合久| 亚洲欧洲一区| 狠狠插影院| 国产在线一区观看| 午夜无人区免费网站| 日韩欧美一区二区在线视频| 国产乱码一区二区三区| 亚洲国产精品国自产拍av| 国内揄拍国产精品| 欧美性猛交xxxxxⅹxx88| 精品国产一级| 少妇又紧又色又爽又刺激的视频| 亚洲日韩aⅴ在线视频| 日韩av中文字幕在线免费观看 | 欧美777精品久久久久网| 日日噜噜夜夜狠狠| freexxxx性| 国产精品9区| 国产一区二区三区网站| 午夜剧场a级片| 午夜影院激情| 国产大片黄在线观看私人影院 | 91麻豆精品国产91久久久久推荐资源| 日本丰满岳妇伦3在线观看| 99久久国产综合精品女不卡| 国产日韩精品久久| 欧美一级久久久| 年轻bbwbbw高潮| 久久国产麻豆| 国产在线视频二区| 日韩一级片免费视频| 在线观看欧美日韩国产| 大bbw大bbw超大bbw| 亚洲va国产| 欧美一区二区三区国产精品| 91波多野结衣| 国产乱人伦精品一区二区三区| 国产伦精品一区二区三| 91精品一二区| 思思久久96热在精品国产| 99精品一区二区| 国产精品一区二区日韩新区| 午夜av片| 国产韩国精品一区二区三区| 午夜影院一级| 91精品国产综合久久婷婷香| 亚洲美女在线一区| 一区二区三区香蕉视频| 久久99亚洲精品久久99果| 日本一二区视频| 欧美精品一区二区久久久| 狠狠色噜噜狠狠狠狠综合久| 欧美777精品久久久久网| 国产日韩精品一区二区三区| 久久国产激情视频| 亚洲第一区国产精品| 国产精品久久久久久久久久久新郎| 中文在线一区| 李采潭无删减版大尺度| 日本一二区视频| 欧洲精品一区二区三区久久| 97涩国一产精品久久久久久久| 日韩中文字幕在线一区| 午夜色影院| 麻豆9在线观看免费高清1| 99精品久久久久久久婷婷| 精品免费久久久久久久苍| 视频一区二区国产| 97人人模人人爽人人喊小说| 国产高清在线精品一区二区三区| 国产97久久| 91麻豆精品国产91久久久资源速度| 日本一二三区视频在线| 久久久久久国产一区二区三区| 精品一区电影国产| 中文字幕a一二三在线| 国产精品麻豆99久久久久久| 88888888国产一区二区| 久久二区视频| 国产精品人人爽人人做av片 | 一区二区三区欧美精品| 国产1区在线观看|